Research GapThis entry is related to AI/ML, which is not well understood from a weakness perspective. Typically, for new/emerging technologies including AI/ML, early vulnerability discovery and research does not focus on root cause analysis (i.e., weakness identification). For AI/ML, the recent focus has been on attacks and exploitation methods, technical impacts, and mitigations. As a result, closer research or focused efforts by SMEs is necessary to understand the underlying weaknesses. Diverse and dynamic terminology and rapidly-evolving technology further complicate understanding. Finally, there might not be enough real-world examples with sufficient details from which weakness patterns may be discovered. For example, many real-world vulnerabilities related to "prompt injection" appear to be related to typical injection-style attacks in which the only difference is that the "input" to the vulnerable component comes from model output instead of direct adversary input, similar to "second-order SQL injection" attacks.
MaintenanceThis entry was created by members of the CWE AI Working Group during June and July 2024. The CWE Project Lead, CWE Technical Lead, AI WG co-chairs, and many WG members decided that for purposes of timeliness, it would be more helpful to the CWE community to publish the new entry in CWE 4.15 quickly and add to it in subsequent versions.