The product allows address regions to overlap, which can result in the bypassing of intended memory protection.
Isolated memory regions and access control (read/write) policies are used by hardware to protect privileged software. Software components are often allowed to change or remap memory region definitions in order to enable flexible and dynamically changeable memory management by system software. If a software component running at lower privilege can program a memory address region to overlap with other memory regions used by software running at higher privilege, privilege escalation may be available to attackers. The memory protection unit (MPU) logic can incorrectly handle such an address overlap and allow the lower-privilege software to read or write into the protected memory region, resulting in privilege escalation attack. An address overlap weakness can also be used to launch a denial of service attack on the higher-privilege software memory regions.
Impact: Modify MemoryRead MemoryDoS: Instability
Effectiveness: High
Non_privileged_SW can program the Address_range register for Region_2 so that its address overlaps with the ranges defined by Region_0 or Region_1. Using this capability, it is possible for Non_privileged_SW to block any memory region from being accessed by Privileged_SW, i.e., Region_0 and Region_1.
Ensure that software accesses to memory regions are only permitted if all three filters permit access. Additionally, the scheme could define a memory region priority to ensure that Region_2 (the memory region defined by Non_privileged_SW) cannot overlap Region_0 or Region_1 (which are used by Privileged_SW).
verilog
localparam logic[63:0] UARTLength = 64'h0011_1000;**
verilog
verilogverilog
localparam logic[63:0] UARTLength = 64'h0000_1000;** localparam logic[63:0] AESLength = 64'h0000_1000; localparam logic[63:0] SPILength = 64'h0080_0000;
verilog