Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Incomplete Base
Structure: Simple
Description

The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer.

The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer.
Common Consequences 2
Scope: IntegrityConfidentialityAvailability

Impact: Modify MemoryExecute Unauthorized Code or Commands

Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of the product's implicit security policy. This can often be used to subvert any other security service.

Scope: Availability

Impact: Modify MemoryDoS: Crash, Exit, or RestartDoS: Resource Consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the product into an infinite loop.

Detection Methods 10
Automated Static AnalysisHigh
This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives. Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds memory operations. This can make it difficult for users to determine which warnings should be investigated first. For example, an analysis tool might report buffer overflows that originate from command line arguments in a program that is not expected to run with setuid or other special privileges.
Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.
Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface can be too large.
Automated Static Analysis - Binary or BytecodeHigh
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Highly cost effective: ``` Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary Weakness Analysis - including disassembler + source code weakness analysis
Manual Static Analysis - Binary or BytecodeSOAR Partial
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Cost effective for partial coverage: ``` Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies
Dynamic Analysis with Automated Results InterpretationSOAR Partial
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Cost effective for partial coverage: ``` Web Application Scanner Web Services Scanner Database Scanners
Dynamic Analysis with Manual Results InterpretationSOAR Partial
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Cost effective for partial coverage: ``` Fuzz Tester Framework-based Fuzzer
Manual Static Analysis - Source CodeSOAR Partial
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Cost effective for partial coverage: ``` Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review (not inspections)
Automated Static Analysis - Source CodeHigh
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Highly cost effective: ``` Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer
Architecture or Design ReviewHigh
According to SOAR [REF-1479], the following detection techniques may be useful: ``` Highly cost effective: ``` Formal Methods / Correct-By-Construction ``` Cost effective for partial coverage: ``` Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
Potential Mitigations 13
Phase: Requirements

Strategy: Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Phase: OperationBuild and Compilation

Strategy: Environment Hardening

Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

Effectiveness: Defense in Depth

Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory: - Double check that your buffer is as large as you specify. - When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. - Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. - If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid Client-Side Enforcement of Server-Side Security. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Phase: OperationBuild and Compilation

Strategy: Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

Effectiveness: Defense in Depth

Phase: Operation

Strategy: Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

Effectiveness: Defense in Depth

Phase: Build and CompilationOperation
Most mitigating technologies at the compiler or OS level to date address only a subset of buffer overflow problems and rarely provide complete protection against even that subset. It is good practice to implement strategies to increase the workload of an attacker, such as leaving the attacker to guess an unknown value that changes every program execution.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.

Effectiveness: Moderate

Phase: Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.
Phase: Architecture and DesignOperation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
Phase: Architecture and DesignOperation

Strategy: Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software. OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations. This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise. Be careful to avoid Creation of chroot Jail Without Changing Working Directory and other weaknesses related to jails.

Effectiveness: Limited

Demonstrative Examples 4
The following code asks the user to enter their last name and then attempts to store the value entered in the last_name array.

Code Example:

Bad
C
c
The problem with the code above is that it does not restrict or limit the size of the name entered by the user. If the user enters "Very_very_long_last_name" which is 24 characters long, then a buffer overflow will occur since the array can only hold 20 characters total.

ID : DX-6

The following code attempts to create a local copy of a buffer to perform some manipulations to the data.

Code Example:

Bad
C
c
However, the programmer does not ensure that the size of the data pointed to by string will fit in the local buffer and copies the data with the potentially dangerous strcpy() function. This may result in a buffer overflow condition if an attacker can influence the contents of the string parameter.

ID : DX-5

The code below calls the gets() function to read in data from the command line.

Code Example:

Bad
C
c
However, gets() is inherently unsafe, because it copies all input from STDIN to the buffer without checking size. This allows the user to provide a string that is larger than the buffer size, resulting in an overflow condition.
In the following example, a server accepts connections from a client and processes the client request. After accepting a client connection, the program will obtain client information using the gethostbyaddr method, copy the hostname of the client that connected to a local variable and output the hostname of the client to a log file.

Code Example:

Bad
C
c
However, the hostname of the client that connected may be longer than the allocated size for the local hostname variable. This will result in a buffer overflow when copying the client hostname to the local variable using the strcpy method.
Observed Examples 5
CVE-2000-1094buffer overflow using command with long argument
CVE-1999-0046buffer overflow in local program using long environment variable
CVE-2002-1337buffer overflow in comment characters, when product increments a counter for a ">" but does not decrement for "<"
CVE-2003-0595By replacing a valid cookie value with an extremely long string of characters, an attacker may overflow the application's buffers.
CVE-2001-0191By replacing a valid cookie value with an extremely long string of characters, an attacker may overflow the application's buffers.
References 23
Writing Secure Code
Michael Howard and David LeBlanc
Microsoft Press
04-12-2002
ID: REF-7
24 Deadly Sins of Software Security
Michael Howard, David LeBlanc, and John Viega
McGraw-Hill
2010
ID: REF-44
Using the Strsafe.h Functions
Microsoft
ID: REF-56
Safe C String Library v1.0.3
Matt Messier and John Viega
ID: REF-57
Address Space Layout Randomization in Windows Vista
Michael Howard
ID: REF-58
Limiting buffer overflows with ExecShield
Arjan van de Ven
ID: REF-59
Top 25 Series - Rank 3 - Classic Buffer Overflow
Jason Lam
SANS Software Security Institute
02-03-2010
ID: REF-74
Understanding DEP as a mitigation technology part 1
Microsoft
ID: REF-61
The Art of Software Security Assessment
Mark Dowd, John McDonald, and Justin Schuh
Addison Wesley
2006
ID: REF-62
The Art of Software Security Assessment
Mark Dowd, John McDonald, and Justin Schuh
Addison Wesley
2006
ID: REF-62
The Art of Software Security Assessment
Mark Dowd, John McDonald, and Justin Schuh
Addison Wesley
2006
ID: REF-62
Position Independent Executables (PIE)
Grant Murphy
Red Hat
28-11-2012
ID: REF-64
Automated Source Code Reliability Measure (ASCRM)
Object Management Group (OMG)
01-2016
ID: REF-961
Automated Source Code Security Measure (ASCSM)
Object Management Group (OMG)
01-2016
ID: REF-962
Prelink and address space randomization
John Richard Moser
05-07-2006
ID: REF-1332
Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR
Dmitry Evtyushkin, Dmitry Ponomarev, Nael Abu-Ghazaleh
2016
ID: REF-1333
Stack Frame Canary Validation (D3-SFCV)
D3FEND
2023
ID: REF-1334
Segment Address Offset Randomization (D3-SAOR)
D3FEND
2023
ID: REF-1335
Process Segment Execution Prevention (D3-PSEP)
D3FEND
2023
ID: REF-1336
Bypassing Browser Memory Protections: Setting back browser security by 10 years
Alexander Sotirov and Mark Dowd
2008
ID: REF-1337
State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation
Gregory Larsen, E. Kenneth Hong Fong, David A. Wheeler, and Rama S. Moorthy
07-2014
ID: REF-1479
Likelihood of Exploit

High

Applicable Platforms
Languages:
C : OftenC++ : OftenAssembly : Undetermined
Modes of Introduction
Implementation
Alternate Terms

Classic Buffer Overflow

This term was frequently used by vulnerability researchers during approximately 1995 to 2005 to differentiate buffer copies without length checks (which had been known about for decades) from other emerging weaknesses that still involved invalid accesses of buffers, as vulnerability researchers began to develop advanced exploitation techniques.

Unbounded Transfer

Functional Areas
  1. Memory Management
Affected Resources
  1. Memory
Taxonomy Mapping
  • PLOVER
  • 7 Pernicious Kingdoms
  • CLASP
  • OWASP Top Ten 2004
  • OWASP Top Ten 2004
  • CERT C Secure Coding
  • WASC
  • Software Fault Patterns
  • OMG ASCSM
  • OMG ASCRM
Notes
OtherA buffer overflow condition exists when a product attempts to put more data in a buffer than it can hold, or when it attempts to put data in a memory area outside of the boundaries of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the "classic" case in which the product copies the buffer without restricting how much data is copied. Other variants exist, but the existence of a classic overflow strongly suggests that the programmer is not considering even the most basic of security protections.
RelationshipAt the code level, stack-based and heap-based overflows do not differ significantly, so there usually is not a need to distinguish them. From the attacker perspective, they can be quite different, since different techniques are required to exploit them.
TerminologyMany issues that are now called "buffer overflows" are substantively different than the "classic" overflow, including entirely different bug types that rely on overflow exploit techniques, such as integer signedness errors, integer overflows, and format string bugs. This imprecise terminology can make it difficult to determine which variant is being reported.